If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+29n=0
a = 8; b = 29; c = 0;
Δ = b2-4ac
Δ = 292-4·8·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-29}{2*8}=\frac{-58}{16} =-3+5/8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+29}{2*8}=\frac{0}{16} =0 $
| 22k^2-15k=0 | | (x-(x-1)/2)-((x-1)/3)=6 | | x^2+10x+24=-1 | | 18r-17r=18 | | 1/2y-8=14 | | 4(b−2)−10=2(b+3) | | 4g/16-38-g/16=3/16 | | -10=f/2-13 | | 18r–17r=18 | | 2{x-4}=-4x+28 | | √(x-1)=√(2x+1) | | 3x+7-2x=10-x | | -3/2=-4/5y-8/3 | | 10g^2-23g-5=0 | | 1−x=6 | | 2x-4=-4x+28 | | h/2+-8=-10 | | ((x-1)/2)+((x-1)/3)+6=x | | 0.40e+12.50=0.25e+14.75 | | 5b+22=133 | | 3x+4/4=10 | | 6z-6=36 | | ((x-1)/2)+((x-1)/3)=6 | | −x=7 | | k/4=6/11 | | -2+2z=2 | | 18k^2-70k-8=0 | | 3f^2+9f=0 | | 3(a+5=24 | | s(2)=-16(2)(2)+117(2)+2 | | 4-7+4*4=x | | 10x-7=90 |